Localization of the intrinsically bent DNA region upstream of the E.coli rrnB P1 promoter.

نویسندگان

  • T Gaal
  • L Rao
  • S T Estrem
  • J Yang
  • R M Wartell
  • R L Gourse
چکیده

DNA sequences upstream of the rrnB P1 core promoter (-10, -35 region) increase transcription more than 300-fold in vivo and in vitro. This stimulation results from a cis-acting DNA sequence, the UP element, which interacts directly with the alpha subunit of RNA polymerase, increasing transcription about 30-fold, and from a positively acting transcription factor, FIS, which increases expression another 10-fold. A DNA region exhibiting a high degree of intrinsic curvature has been observed upstream of the rrnB P1 core promoter and has thus been often cited as an example of the effect of bending on transcription. However, the precise position of the curvature has not been determined. We address here whether this bend is in fact related to activation of rRNA transcription. Electrophoretic analyses were used to localize the major bend in the rrnB P1 upstream region to position approximately -100 with respect to the transcription initiation site. Since most of the effect of upstream sequences on transcription results from DNA between the -35 hexamer and position -88, i.e. downstream of the bend center, these studies indicate that the curvature leading to the unusual electrophoretic behavior of the upstream region does not play a major role in activation of rRNA transcription. Minor deviations from normal electrophoretic behavior were associated with the region just upstream of the -35 hexamer and could conceivably influence interactions between the UP element and the alpha subunit of RNA polymerase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner.

The phospholipase C gene (plc) of Clostridium perfringens possesses three phased A-tracts forming bent DNA upstream of the promoter. An in vitro transcription assay involving C.perfringens RNA polymerase (RNAP) showed that the phased A-tracts have a stimulatory effect on the plc promoter, and that the effect is proportional to the number of A-tracts, and more prominent at lower temperature. A g...

متن کامل

Molecular anatomy of a transcription activation patch: FIS-RNA polymerase interactions at the Escherichia coli rrnB P1 promoter.

FIS, a site-specific DNA binding and bending protein, is a global regulator of gene expression in Escherichia coli. The ribosomal RNA promoter rrnB P1 is activated 3- to 7-fold in vivo by a FIS dimer that binds a DNA site immediately upstream of the DNA binding site for the C-terminal domain (CTD) of the alpha subunit of RNA polymerase (RNAP). In this report, we identify several FIS side chains...

متن کامل

An inactive open complex mediated by an UP element at Escherichia coli promoters.

A specific interaction between the alpha subunit of RNA polymerase and an A+T-rich upstream sequence (UP element) stimulates transcription at some promoters in Escherichia coli. We found that RNA polymerase formed a heparin-resistant nonproductive initiation complex at the malT promoter which has an A+T-rich upstream sequence that begins 9 bp upstream of the -35 region. Substitution of other se...

متن کامل

Escherichia coli promoters with UP elements of different strengths: modular structure of bacterial promoters.

The alpha subunit of Escherichia coli RNA polymerase (RNAP) participates in promoter recognition through specific interactions with UP element DNA, a region upstream of the recognition hexamers for the sigma subunit (the -10 and -35 hexamers). UP elements have been described in only a small number of promoters, including the rRNA promoter rrnB P1, where the sequence has a very large (30- to 70-...

متن کامل

Visualization and quantitative analysis of complex formation between E. coli RNA polymerase and an rRNA promoter in vitro.

We have established conditions that stabilize the interaction between RNA polymerase and the rrnB P1 promoter in vitro. The requirements for quantitative complex formation are unusual for E. coli promoters: (1) The inclusion of a competitor is required to allow visualization of a specific footprint. (2) Low salt concentrations are necessary since complex formation is salt sensitive. (3) The add...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 22 12  شماره 

صفحات  -

تاریخ انتشار 1994